Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury

نویسندگان

  • Chang-Tsen Hung
  • Li-Dian Chen
  • Chien-Wei Hou
چکیده

Objectives Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods The infaction of Sprague Dawley (SD) rats and hypoxia models of BV-2 microglia or PC12 cells were investigated for in vivo and in vitro test respectively. Lipid peroxidation and reactive oxygen species (ROS), prostaglandin E2 (PGE2) and related signaling pathways from hypoxic cells were analyzed by ELISA or Western blot assay, respectively. Results MMEDA showed a protective effect when given 90 min after the focal cerebral ischemia. The neuroprotection of MMEDA was further confirmed by attenuating ROS and PGE2 release from hypoxic BV-2 or PC12 cells. MMEDA significantly reduced hypoxia-induced JNK and caspase-3 (survival and apoptotic pathways) in PC12 cells. Conclusion The neuroprotective effect of MMEDA on ischemia/hypoxia models was involved with its antioxidative activity and anti-inflammatory effects. These results suggest that MMEDA exert effective neuroprotection against ischemia/hypoxia injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury

Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...

متن کامل

PI3K/Akt signaling pathway is required for neuroprotection of thalidomide on hypoxic-ischemic cortical neurons in vitro.

Thalidomide, a derivative of glutamic acid, is used for immunomodulatory therapy in various diseases through inhibition of tumor necrotic factor-α (TNF-α) release. However, the effects of thalidomide in central nervous system (CNS) diseases such as stroke or hypoxic-ischemic encephalopathy (HIE) are unknown. In this study, we aimed to test whether thalidomide protects against hypoxic-ischemic n...

متن کامل

Disparate roles of zinc in chemical hypoxia-induced neuronal death

Accumulating evidence has provided a causative role of zinc (Zn(2+)) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn(2+) is involved in hypoxic neuronal death. The hypoxic chemicals rapidly eli...

متن کامل

Caffeic acid phenethyl ester prevents neonatal hypoxic-ischaemic brain injury.

Neonatal hypoxic-ischaemic (HI) brain injury resulting in encephalopathy is a leading cause of morbidity and mortality with no effective treatment. Here we show that caffeic acid phenethyl ester (CAPE), an active component of propolis, administered either before or after an HI insult, significantly prevents HI-induced neonatal rat brain damage in the cortex, hippocampus and thalamus. In additio...

متن کامل

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

PURPOSE Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2017